
April 5, 2016 11:12 JMMR

Journal of Medical Robotics Research, Vol. 01, No. 01 (2016) 1–17
c© World Scientific Publishing Company

Ultrasound-guided Model Predictive Control of Needle Steering in
Biological Tissue

Mohsen Khadema *, Carlos Rossaa, Ron S. Slobodab, Nawaid Usmanib, Mahdi Tavakolia

aDepartment of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
E-mail: {mohsen.khadem; rossa; mahdi.tavakoli}@ualberta.ca

bCross Cancer Institute and the Department of Oncology, University of Alberta, Edmonton, Canada
E-mail: {ron.sloboda; nawaid.usmani}@albertahealthservices.ca

In needle-based medical procedures beveled tip flexible needles are steered inside soft tissue to reach the desired target locations.
In this paper, we have developed an autonomous image-guided needle steering system that enhances targeting accuracy in needle
insertion while minimizing tissue trauma. The system has three main components. First is a novel mechanics-based needle steering
model that predicts needle deflection and accepts needle tip rotation as an input for needle steering. The second is a needle tip
tracking system that determines needle deflection from the ultrasound images. The needle steering model employs the estimated
needle deflection at the present time to predict needle tip trajectory in the future steps. The third component is a nonlinear
model predictive controller (MPC) that steers the needle inside the tissue by rotating the needle beveled tip. The MPC controller
calculates control decisions based on iterative optimization of the predictions of the needle steering model. To validate the proposed
ultrasound-guided needle steering system, needle insertion experiments in biological tissue phantoms are performed in two cases–
with and without obstacle. The results demonstrate that our needle steering strategy guides the needle to the desired targets with
the maximum error of 2.85 mm.
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1. Introduction

Percutaneous needle insertion is a common type of mini-
mally invasive surgery used for diagnostic and therapeu-
tic applications such as biopsy, drug delivery, and cancer
treatment. Brachytherapy is one type of needle-based in-
tervention used for cancer treatment. In brachytherapy the
surgeon inserts a needle into a patient’s body such that
radioactive seeds loaded in the needles can be placed in
or near the tumor (see Fig. 1). During insertion, imaging
modalities, such as X-ray, fluoroscopy and ultrasound are
used to monitor the location of the needle and the prostate.
Currently, transrectal ultrasound is the primary imaging
modality used for prostate brachytherapy, with transverse
imaging used to help guide needles to a precise target in
the prostate. The efficiency of percutaneous needle inser-
tion procedures highly depends on accurate control of the
needle tip trajectory. Considering factors such as tissue de-
formation and needle deflection effecting targeting accuracy

and given the limited control the surgeon over the inserted
needle when manipulating its base, accurate steering and
prediction of the needle tip during manual insertion is diffi-
cult.1 A robotic needle steering system which automatically
steers the needle can enhance needle targeting accuracy.

In this paper an autonomous ultrasound-guided nee-
dle steering system is developed to control the needle tip
trajectory by axially rotating the needle tip. The control
system enhances needle targeting accuracy and limits the
tissue damage by minimizing number of needle rotation.
The needle steering system is based on a nonlinear model
predictive control (MPC) approach. The aim of the MPC
scheme is to change the actual position of the needle tip
towards a desired future position following an optimal be-
haviour. The MPC calculates control actions based on pre-
dictions of a mathematical model of needle steering. The
term “needle steering” implies control of the needle tip de-
flection by axially rotating the needle and changing the
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direction of the needle tip trajectory as the needle is in-
serted. The model is updated online by real-time feedback
of the needle tip deflection measured from the ultrasound
images.

Fig. 1. A schematic of needle insertion in brachytherapy. The
surgeon inserts long flexible needles through the patient’s per-
ineum in order to deliver radioactive seeds within the prostate
gland.

2. Related Work

Several needle steering strategies have been developed to al-
low for needle tip position adjustments during insertion.2–5

Various inputs such as needle insertion velocity, needle ax-
ial rotation (bevel location adjustment), and needle base
force/torque can be used for needle steering. The main re-
quirement for control of needle steering is a model that
relates these inputs to the needle deflection.

2.1. Modelling Needle Deflection

DiMaio and Salcudean6,7 and Goksel et al.8 used the Fi-
nite Element Method (FEM) to model the tissue interac-
tion with a needle in order to find the needle tip position.
Glozman and Shoham modelled the needle as a linear beam
supported by virtual springs and used an inverse kinematics
algorithm to relate the needle deflection to base manipula-
tions.9 The focus of these efforts have been on steering of
the needles with symmetric tip. Often in needle-based in-
terventions, steerable flexible needles with beveled tips are
used to enhance control over the needle deflection. A needle
with an asymmetric bevelled tip has an uneven distribution
of forces at the tip, which causes the needle to deflect from
a straight path. Using these needles, the surgeon can con-
trol the tip deflection by rotating the needle that changes
the orientation of the bevel tip and causes the needle to
bend in the opposite direction.

There has been extensive research on modelling steer-
able beveled tip needles. Alterovitz et al. presented a 2D
FEM model of needle insertion considering the effect of
the tip bevel.10 Webster et al. developed and experimen-
tally validated a kinematic bicycle-like model for steering
of flexible bevel-tipped needles.11 The model assumes that
the needle tip follows a constant curvature path without

causing large tissue deformation. Park et al. proposed an
improved stochastic kinematic model by adding noise to the
input parameters in the ideal kinematic model.12 Minhas et
al. presented the idea of duty cycled spinning of the needle
during insertion and showed that the curvature of the nee-
dle path in the kinematics-based model can be controlled
periodic needle rotation.13

Several research groups have used classical beam the-
ories to develop mechanics-based models of needle deflec-
tion.14–16 Yan et al. modelled needle interaction with the
tissue as a beam connected to a series of springs.14 From our
group, Lehmann et al. developed a needle insertion model
using an Euler-Bernoulli beam deflecting under static force
distribution profiles,17 and Khadem et al. used a dynamic
beam theory to develop a model relating the needle tip po-
sition to insertion velocity.18 Misra et al. used an energy-
based formulation for a beam that is in contact with a
nonlinear hyperplastic tissue to simulate needle steering.19

Abayazid et al. extended the model to predict multiple-
bending caused by needle rotation during needle inser-
tion.20

2.2. Needle Steering

To the best of the authors’ knowledge, the nonholonomic
bicycle-like model11 is the only model that has insertion
velocity and axial needle rotation as its inputs. This model
has been widely used for needle steering. Abayazid et al.
modified the kinematics-based model by accounting for the
tissue cutting angle and used the model for image-guided
control of the needle tip deflection.20 Rucker et al. proposed
a sliding mode control based on the kinematics-based model
and used it to track a desired trajectory within the tissue.3

Patil et al. developed an automatic needle steering ap-
proach for reaching targets in 3D environments while avoid-
ing obstacles.4 Their approach relies on a rapidly exploring
random tree (RRT) motion planner that calculates the op-
timal tip trajectory using the kinematics-based model of
needle steering. Vrooijink et al. developed a needle steer-
ing system that uses 2-D ultrasound images to estimate the
needle pose and an RRT motion planner that computes a
feasible needle path toward the target based on the needle
pose estimation. Adebar et al. presented a method for 3D
ultrasound guidance of robotic needle steering in biological
tissue. They used Doppler imaging combined with a piezo-
actuated vibrating needle to track and control the needle
tip.21

The performance of the model-based controllers highly
relies on accurate model predictions and precise needle po-
sition estimation. The widely used kinematic model as-
sumes that as the needle is inserted, it moves on a constant
curvature path, which is not always the case.22 Also, the
model assumes that the needle is flexible relative to the
tissue and neglects the effects of tissue deformation. Previ-
ous studies have shown that when the kinematic model is
applied to path planning and control in soft tissues, there
are non-negligible deviations between the model and exper-
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imental data.19,23

3. Objective

In this paper, we present a novel needle steering controller
based on model predictive control theory. The goal is to
steer the needle tip to follow a desired trajectory and reach
a target point in the tissue. The desired tip trajectory can
be a straight line toward the target location or a path
around patient-specific anatomical obstacles. Obstacles are
sensitive or impenetrable anatomical regions in the prox-
imity of the target point such as glands, blood vessels or
bones. Given preoperative medical images the clinician can
specify the insertion location and target region as well as
sensitive structures and obstacles.

Fig. 2 shows a block diagram of our closed-loop control
algorithm for ultrasound-based guidance of needle steer-
ing. The three main components of the needle steering
system are highlighted in Fig. 2. The first one is a novel
mechanics-based needle steering model that predicts the
needle deflection and accepts needle tip rotation as an in-
put. This model is an extension of the mechanics-based
needle deflection model presented in our previous work.18

Modifications are made to account for effects of the needle
rotation on the needle tip deflection.

Needle-tissue
system 

Needle steering
model

Cost function
Optimizer

Future deflection

Ultrasound
image processing

Ultrasound
 image

Optimal
Control action

Control action

Desired needle
tip trajectory

MPC

Plant Sensor

Needle tip 
deflection

Fig. 2. Scheme of the MPC closed-loop components.

The second component is a needle tip tracking system
that estimates the needle deflection from the ultrasound
images. Ultrasound image feedback is given to the model
(the first component) as the initial condition in the sense
that the needle steering model employs the estimated nee-
dle deflection at the present time to predict needle tip
trajectory in the future steps. The third component is a
nonlinear model predictive controller (MPC) that steers
the needle inside the tissue by rotating the needles beveled
tip. The MPC controller calculates the control decisions
based on iterative optimization of a cost function. The cost
function evaluates the difference between the predictions
of the needle steering model and the desired tip trajectory.

Fig. 3 shows the procedure used in the proposed MPC
approach to find the optimal control inputs. First, the nee-
dle tip position is determined using the ultrasound images.
Using the needle steering model and image-based feedback

multiple needle tip trajectories are simulated for different
depths of rotation. Next, the MPC controller selects the
optimal path and the corresponding depth of rotation and
uses the inputs to steer the needle towards a target point.

3.1. Contributions

The aim of this research is to demonstrate the feasibility of
using mixed online image feedback and model predictions
for optimal needle steering and increasing targeting accu-
racy in needle-based interventions. Our primary contribu-
tion is a novel image-guided MPC approach for steering of
needles in soft tissue, which can be used to target a specific
point or to follow a desired trajectory and manoeuvre the
needle tip around an obstacle. Other contributions of this
paper include: (1) A real-time needle steering model that
predicts needle deflection based on axial rotation of nee-
dle as an input. (2) Combining online image-based needle
estimation and model prediction to achieve desired needle
tip trajectories. (3) Implementing an optimal image-based
controller such that it not only enhances targeting accuracy
but also minimizes patient operative trauma (i.e., tissue
damage) by limiting the number of needle axial rotations
and tissue cutting.

The rest of the paper is organized as follows: In Sec-
tion 4, our new mechanics-based model of needle steering
is presented. In Section 5, the process of needle tracking
from ultrasound images is discussed. Details of the pro-
posed MPC scheme are presented in Section 6. In Section 7,
experiments are performed on an ex-vivo animal tissue
to validate the needle steering model, evaluate the needle
tracking and steering algorithms, and demonstrate that the
presented framework is applicable to clinical needle-based
interventions.

4. Modelling of Needle Steering

In this section, a modification of the mechanics-based nee-
dle deflection model in18 is extended to account for the
needle tip rotation and to develop a real-time needle steer-
ing model allowing axial rotation to be used as a control
command for closed-loop needle steering. The proposed
model simulates the dynamics of a flexible needle as the
deflection of a cantilever beam under various static and
dynamic loads. The external loads represent the effects of
needle-tissue interactions. The model assumes that the nee-
dle bends in a plane (2D) and considers the effects of tissue
deformation, tissue cutting force, and needle bevel angle on
needle deflection.

4.1. Mechanics-based Model of Needle
deflection

Deflection of the flexible needle is modelled as the dynamic
response of a cantilever beam under external static and
dynamic loads. The external loads represent the effects of



April 5, 2016 11:12 JMMR

4 Mohsen Khadem

Obstacle

TargetNeedle

Desired trajectory

Current state of the needle
Model predictions

Develop model predictions Enforce control based on optimal prediciton21 3

Obstacle

Fig. 3. Ultrasound-guided model predictive needle steering steps. (1) The current position of the needle tip is estimated from
ultrasound images. (2) The position of needle tip is used as initial condition in the needle steering model. Since the model accepts
needle axial rotation as an input, an optimization algorithm is used to generate multiple needle tip trajectories corresponding to
needle rotation at various future depths. (3) The closest path to the desired trajectory that has the minimum amount of tissue
deformation and the least number of needle rotations is selected as the optimal path. The control input (depth of axial rotation)
corresponding to the optimal path is used to steer the needle. Since the needle tip will inevitably deviate from its model prediction
because of tissue inhomogeneity and uncertainties in model parameters, the above MPC loop is repeated to continually monitor
and compensate for needle tip deviations.

needle interaction with the surrounding environment. Fig. 4
shows a schematic diagram of the proposed model of the
flexible needle. The needle is clamped to the local frame
(xy) that is moving along the X direction in global inertial
frame (XY ) with velocity V . During the insertion the nee-
dle cuts through the tissue and cutting force Fc is applied
at the tip of the needle. As the needle bends tissue deforms
and in turn applies forces to the needle, these forces are
modelled by a transverse distributed load, Fs. This force
profile is applied to the portion of the needle that is in-
side the tissue. As the needle is inserted into the tissue, the
location of Fs along the length of the needle changes.

The following assumptions are made in modelling the
needle deflection.

(1) The needle is inserted at a constant velocity. Also,
the needle has only planar deflection and remains
in the insertion plane defined by initial orientation
of the needle beveled tip.

(2) The needle behaves as a prismatic beam that is in-
finitely stiff in shear. Also, the rotary inertia of the
needle as a result of needle bending is negligible.
These assumptions are known as Euler-Bernoulli
beam theory assumptions,24 which hold as long as
the ratio of the beam height to the radius of curva-
ture of the beam is much smaller than unity. This is
typically the case for brachytherapy needles includ-
ing the 200 mm brachytherapy needle used in our
experiments, which has a slenderness ratio (needle
thickness over its length) of less than 0.01.

(3) The effect of friction between the needle shaft and
tissue on the needle deflection is negligible. This is
a valid assumption for needle insertion in soft tis-
sues where blood acts as a lubricant between needle
shaft and tissue and reduces the magnitude of the
friction force. Also, friction is an axial force tan-
gent to the needle shaft. Assuming the axis of the
beam is incompressible, effects of axial forces on
bending dynamics of the beam is negligible.

Y

X x

y

V

V

Needle

Fs

P

Q Fc

Tissue

Fig. 4. A schematic of a bevel-tip needle inserted into a soft
tissue. V is the insertion velocity, Fc is the tissue cutting force
applied perpendicular to the beveled tip. Q and P are the trans-
verse and axial component of Fc, respectively, and are related
by P = Q tan(α) where α is the bevel angle. Fs is the force
distribution used to model tissue reaction forces as the result of
its deformation caused by needle bending.

Using these assumptions and following the modelling
approach discussed in our previous work,18 the partial dif-
ferential equation governing the dynamics of needle motion
can be found as

EIω′′′′ + ρAω̈ + Pω′′ = Qδ`(x) + FsH`−V t(x) (1)

where ω is the needle deflection, and E, A and I are the
Young’s modulus, cross sectional area, and second moment
of inertia of the needle, respectively. Q and P are transverse
and axial components of the cutting force, respectively (see
Fig. 4). In (1), dot and prime denote differentiation with
respect to time t and position x, respectively. As it was
mentioned previously, the tissue force distribution Fs is a
moving load acting over a specific length of the needle. Also
the transverse component of the cutting force Q, is a static
concentrated force acting only at the tip of the beam. In
(1), in order to define the limits of these force distributions
applied to a portion of the beam, we used unit step (H(·))



April 5, 2016 11:12 JMMR

Ultrasound-guided Control of Needle Steering 5

and Dirac delta (δ(·)) functions defined in the xy frame as

δx0(x) =

{
+∞ if x = x0

0 if x 6= x0
(2a)

Hx0
(x) =

{
1 if x > x0

0 if x < x0
(2b)

The needle has no deflection at t = 0 and starts from
rest, therefore

ω(x, 0) = 0, ω̇(x, 0) = 0 (3)

The clamped side of the needle is assumed to have no de-
flection and have a slope of zero. The tip of the needle is
assumed to experience no bending moment and the initial
displacement at the tip of the needle is given by ω0. Thus,
the following boundary conditions apply

ω(0, t) = 0, ω′(0, t) = 0, ω′′′(`, t) = 0, ω(`, t) = ω0

(4)
Note that ω0 is initially equal to zero. During the needle
insertion, ω0 is estimated using ultrasound images.

In the following section, a model is developed to sim-
ulate needle-tissue interaction forces. This model is imple-
mented in (1) to develop the final model of needle steering.

4.2. Modelling Needle-Tissue Interaction
Forces

The distributed force Fs in Fig. 4 represents the needle-
tissue interaction forces. The magnitude of the approxi-
mated interaction forces are proportional to the total de-
formation of tissue due to the needle deflection. Taking into
consideration the viscoelastic behavior of the tissue, tissue
reaction forces can be related to tissue deformation using
the Kelvin-Voigt model for viscoelastic tissues given by25

Fs(x, t) = Ksxs + Csẋs (5)

where Fs is the tissue compression force around point x of
the needle at time t, Ks is the spring stiffness, Cs is the
tissue damping coefficient, and xs is the tissue deformation
around point x.

In our MPC-based needle steering approach, we need
to predict the needle deflection in the future steps from ar-
bitrary and feasible initial conditions, i.e., initial deflection
ω0 at a given insertion depth d0 (see Fig. 5). In the control
algorithm, the current deflection of needle tip is measured
from the ultrasound images and used as feedback in closed-
loop control of needle steering. Then, the developed model
informed by the image feedback is used to predict the nee-
dle deflection in our desired control horizon.

Now, to calculate the tissue deformation during needle
insertion, we propose a method composed of two different
steps corresponding to two phases of needle-tissue interac-
tion:

(1) Phase 1– Needle-tissue interaction forces given ini-
tial tip deflection.

(2) Phase 2– Needle-tissue interaction as the needle is
further inserted in the tissue.

V

Tissue

Needle

t=0

Cutting Path

X

Y

Fig. 5. Initial configuration of partially inserted needle in tis-
sue. ω0 is the initial deflection of the needle tip, d0 is the length
of the part of the needle that is already inserted in the tissue,
and Fc is the tissue cutting force applied to the needle tip

Let us define the cutting path as the path the nee-
dle tip cuts through in the tissue during insertion. Now,
the amount of tissue deformation at the onset of insertion
is the difference between the cutting path and the needle
shape. Now, using the tissue model given by (5), needle tis-
sue interaction forces at the beginning of the insertion can
be obtained as

Fs0 = Ks [ω(x, t)− CP (x)] + Csω̇(x, t) (6)

where Fs0 denotes the tissue forces applied to the part of
the needle that is initially inserted in the tissue and CP is
the cutting path. By definition, the cutting path is equal
to the path followed by the needle tip. Thus, by track-
ing the needle tip in the incoming image frames, we can
calculate the cutting path at any time instant. In the pro-
posed image-guided needle steering approach, CP is mea-
sured from the ultrasound images and given to the model
in preparation for the model-based optimization.

Now, we calculate tissue deformation forces in the sec-
ond phase of needle-tissue interaction, i.e., during tissue
cutting. The amount of tissue deformation is calculated
by comparing the deflection of the needle element at the
present time with the position of the needle tip at a certain
time in past when it was in the current position of the same
needle element (i.e., the cutting path). This approach is il-
lustrated in Fig. 6. In order to find the tissue deformation
at time t = T2 in the proximity of the generic point N of
the needle at a position XN , we need to find the cutting
path, i.e., the needle tips transverse deflection when the tip
passed XN at time t = T1, and subtract it from the current
position of point N of the deflected needle. Then, using the
spring-damper viscoelastic tissue model in (5), we can esti-
mate needle-tissue interaction forces applied to element N
of the needle.
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Fig. 6. A schematic of needle insertion and cutting path. Tis-
sue compression around generic point N of the needle is the
difference between cutting path at time T1 and deflection of the
needle at point N at time T2. Ks and Cs are the soft tissue
stiffness and viscous damping coefficient

Based on Fig. 6 and using (5), the tissue reaction force
during needle steering is found as

Fs = Ks [ω(x, t)− ω(`, t− τ)] + Csω̇(x, t) (7)

where τ denotes the time difference between deflection of a
generic point of a needle positioned at present time and the
cutting path (i.e., needle tip deflection) at a specific time in
the past. For the point N in Fig. 6, τ = T2−T1. ω(`, t− τ)
is the deflection of the needle tip or the cutting path . As-
suming needle deflection is relatively small compared to the
length of the needle we have

τ =
`− x
V

(8)

where V is the insertion velocity.
Introducing the tissue interaction force profiles given

by (6) and (7) in (1), we have the following modified model
of needle steering:

EIω′′′′ + ρAω̈ + Pω′′ =

Qδ`(x) + Fs0[H`−V t−d0 −H`−V t](x) + FsH`−V t(x)
(9)

In (9), the initial needle-tissue interaction force (Fs0) are
only applied to the needle up to the initial insertion depth
d0, and the needle-tissue force profile for the cutting phase
(Fs) is applied to the part of the needle that passes the
initial insertion depth d0 .

Note that the presented force profile enables modelling
of 180◦ rotations of the needle tip and can accommodate
any number of rotations. When the needle is rotated dur-
ing the insertion, the orientation of the beveled tip changes
as well as the direction of the transverse component of the
cutting force changes, causing the needle to bend in the op-
posite direction and producing a double bend shape. The
part of the needle that is already inside the tissue is pushed
to stay in the path produced by the needle beforehand, i.e.,

the cutting path, restricting displacements of the elements
that are already inside the tissue. Thus, the model sim-
ulates multiple bending in the needle during needle axial
rotation.

In the next section, mathematical simplification tech-
niques are employed to reduce the order of the needle steer-
ing model in (9) for implementation in the real-time model
predictive controller.

4.3. Model Order Reduction

The PDE in (9) implies that the system has infinite dimen-
sions. Also, the equations for calculating ω are nonlinear
and complicated to solve . Also, (9) has non-homogeneous
boundary conditions given by (4). In this section we sim-
plify the model to allow for real-time prediction of needle
deflection.

Based on (4), we have non-homogeneous boundary
conditions. In the presence of a non-homogeneous boundary
conditions, we cannot simply solve the PDE given by (1)
using conventional methods such as separation of variables
or discretization techniques. In the following, we use substi-
tution of variables to convert a non-homogeneous bound-
ary conditions to homogeneous. We introduce the new field
variable η(x, t) satisfying the following equation:

ω(x, t) = η(x, t) + λ(x)ω0 (10)

Substituting (10) in the boundary conditions in (4) gives

η(0, t) + λ(0)ω0 = 0

η′(0, t) + λ′(0)ω0 = 0

η′′′(`, t) + λ′′′(`)ω0 = 0

η(`, t) + λ(`)ω0 = ω0

(11)

Based on (11), in order to have homogeneous boundary
conditions, we must have

λ(0) = 0, λ′(0) = 0, λ′′′(`) = 0, λ(`) = 1 (12)

We choose λ(x) as a 2nd order polynomial satisfying (12)

λ(x) =
(x
`

)2

(13)

By substituting (13) and (10) into (9), we obtain

EIη′′′′ + ρAη̈ + P (η′′ + 2
ω0

`2
) =

Qδ`(x) + Fs0[H`−V t−d0 −H`−V t](x) + FsH`−V t(x)
(14)

with the following homogeneous boundary conditions:

η(0, t) = 0, η′(0, t) = 0, η′′′(`, t) = 0, η(`, t) = 0
(15)

Note that η(x, t) calculated using the above procedure is
not a unique function. However, the solution of the original
model in (9) can be correctly determined by (14).

Now, the continuous infinite-dimensional PDE model
in (1) can be simplified by a mathematical discretiza-
tion method. In the following, we use an approach known
as Bubnov-Galerkin method.26 η(x, t) is approximated by
a linear combination of n arbitrarily assumed functions
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Wi(x), i = 1, ..., n, representing the first n modes of vi-
bration. These functions satisfy the boundary conditions
and are differentiable to the highest order of the PDE. Fol-
lowing this approach, η(x, t) is approximated by

η(x, t) ' η̂(x, t) =

n∑
i=1

φi(t)Wi(x) (16)

where φi(t) (i = 1, ..., n) are generalized coordinates ex-
pressing the deformation of the beam with respect to time.
Following the Bubnov-Galerkin method, we can get a finite-
dimensional approximation of the original PDE by18

M̂φ̈ + K̂φ + R̂φ = Ŝ(φ) + V̂ + Ĝ (17)

where φ is the vector of the generalized coordinates, and
the elements of matrices and vectors in (17) are given by

M̂ij = ρA

∫ `

0

Wj(x)Wi(x)dx (18a)

K̂ij = EI

∫ `

0

Wj
′′′′(x)Wi(x)dx (18b)

R̂ij = P

∫ `

0

Wj
′′(x)Wi(x)dx (18c)

Ŝi =

∫ `

`−X
Fs(x, t)Wi(x)dx+

∫ `−X

`−X−d0
Fs0(x, t)Wi(x)dx

(18d)

V̂i = Q (18e)

Ĝi = −2P
ω0

`2

∫ `

0

Wi(x)dx (18f)

A good choice for the assumed functions (Wi(x)) are
the mode shapes of a homogenous clamped-free beam. In
this way, we ensure that the assumed functions satisfy
the boundary conditions in (15). The mode shapes for the
clamped-free beam are given by27

Wi(x) = 1
κi

[
−γi

(
cos(βix

` )− cosh(βix
` )

)
+ sin(βix

` )− sinh(βix
` )

]
(19)

where βi (i = 1, ..., n) is a dimensionless constant corre-
sponding to different modes of vibration. In this work, we
will estimate the continuous model given in (14) using the
first four modes. The values of the first four β for a clamped-
free beam are 1.857, 4.694, 7.855 and 10.996, respectively.27

γ and κ in (19) are given by

γi =
sinβi + sinhβi
cosβi + coshβi

κi = −γi (cosβi − coshβi) + sinβi − sinhβi

(20)

By solving the above system of ODEs, the time func-
tions (φi(t)) are found and the deflection of the needle at
each point (ω(x, t)) can be calculated using (16) and (10).

Ŝ in (17) shows the effects of reaction forces from the tissue
and can be calculated by introducing (16) and (10) in the
soft tissue model given by (6) and (7).

5. Needle Tracking in Ultrasound Images

In this section, a method for estimating the needle tip tra-
jectory from ultrasound images is presented. The needle
tip location and cutting path are estimated based on partial
observations of the needle axial cross sections within a small
region of 2D transverse ultrasound images. As discussed in
Section 4.2, the cutting path represents the history of the
needle tip deflections from the beginning of insertion up to
the current time. Thus, by locating the tip position, we can
also estimate the cutting path.

Researchers has previously developed needle detection
algorithms using 3D volumetric images.28–30 For instance,
Ding et al. developed a 3D segmentation algorithm for lo-
cating the needle and implanted seeds in brachytherapy
procedures.31 Uhercik et al. proposed a method for detect-
ing the position and orientation of long surgical tools in
3D ultrasound images using Random Sample Consensus
(RANSAC) algorithm.32 Zhao et al. implemented a Kalman
filter technique in RANSAC algorithm for tracking micro-
tools in 3D.31 Tracking needle trajectory in 3D ultrasound
images is computationally less efficient compared to 2D nee-
dle tracking. Also, state-of-the-art 3D ultrasound machines
are very costly and not available in most hospitals. Thus,
it is more convenient to use 2D ultrasound images for nee-
dle tracking especially for real-time applications. In needle-
based medical procedures, 2D ultrasound imaging can be
used to acquire transverse and sagittal images. The planes
are defined in reference to the anatomical planes of the hu-
man body. In the transverse images, an axial cross section
of the needle can be detected and in sagittal images a small
portion of the needle shaft is visible.

Previous efforts in detecting needle tip in 2D sagittal
images include the work performed by Okazawa et al., who
proposed a Hough transform based detection scheme.33

Kaya et al. used Gabor filtering and the utilization of
RANSAC to improve needle segmentation.34 From our
group, Carrier et al. used RANSAC processing in combina-
tion with a simple mechanics-based needle model to predict
the entire needle shape using partial observation of needle
in 2D ultrasound images.35 In brachytherapy, aligning the
US probe with the sagittal plane that contains the needle
is not always possible using endorectal probes.

Recently, researchers have developed needle tip detec-
tion strategies for tip tracking in 2D transverse ultrasound
images. Transverse ultrasound images eliminate compli-
cations with probe alignment found in sagittal imaging.
Vrooijink et al. presented a method for online flexible nee-
dle tracking in 3D using 2D ultrasound images.5 They used
a combination of median filtering, thresholding, and Hough
transform to find the center of the needle cross section in
transverse images visualizing the needle tip. Abayazid et
al. also used 2D ultrasound to estimate needle tip pose and
track the needle tip in 3D during the insertion.36 From our
group, Waine et al. used images from an ultrasound probe
moving along the shaft of a inserted needle to estimate
needle tip deflection.37 In this approach, possible needle lo-
cations are identified in the image using a mix of filtering
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and thresholding. Later, RANSAC algorithm is used to find
the needle tip position and predict the needle shape.

Below, we propose a new approach to track the needle
tip trajectory and estimate the cutting path using 2D trans-
verse images. Several consecutive image processing steps
are combined to determine the needle tip location in each
of the transverse images and to construct the tissue cutting
path (see Fig. 7). In prostate brachytherapy, transverse im-
ages of needle close to the tip are acquired by inserting the
endorectal probe as shown in Fig. 1. Here, we use a robot-
ically driven ultrasound probe that follows the needle tip
to capture real-time transverse images of the needle. De-
tails of the experimental setup used to capture transverse
images of the needle tip is discussed in Section 7.

Fig. 7. ultrasound-based needle tracking. Multiple transverse
images of needle tip are obtained and used to reconstruct the
needle tip trajectory (cutting path) in real-time.

Here is our proposed algorithm for needle tip tracking:

Algorithm 5.1.
(1) A region of interest (ROI) around the initial po-

sition of the needle tip in the first frame of the
ultrasound images is selected manually(Fig. 8(b)).

(2) The selected ROI is processed using a series of
image processing techniques including median fil-
tering and iterative thresholding to reduce image
noise and separate the needle tip from the image
background (Fig. 8(c)).

(3) SUSAN corner detection algorithm38 is used to find
centroid of the needle axial cross section in the ROI
(Fig. 8(d)).

(4) A motion vector estimation algorithm is used to es-
timate 2D translational motion of the needle tip in
the transverse images. The results are extrapolated
to predict the position of the ROI in the next frame
(Fig. 8(e) and Fig. 8(f)). The algorithm is repeated
from Step 2 using the selected ROI.

Fig. 8 shows how the image processing algorithm is
applied to determine the needle tip position. After manu-
ally selecting a window of 75 by 75 pixels around the initial
position of the needle in the first frame, median filtering
and thresholding are used to reduce speckles and eliminate
small artifacts in the ultrasound image. For thresholding

the image inside this ROI, first we select an initial value
T for the threshold and the image is segmented. This pro-
duces two groups of pixels consisting of pixels with gray
level values bigger and smaller than T . Next, the averaged
gray level for the pixels in two groups are computed and
used as the next value of the threshold T . This process is
continued until the differences in T between different iter-
ations is smaller than a predefined threshold.

As mentioned previously, the SUSAN (i.e., Smallest
Univalue Segment Assimilating Nucleus) edge detector is
used to estimate the position of the needle cross sec-
tion’s centroid.38 Following the SUSAN algorithm, a cir-
cular mask is placed around a pixel in the ROI; this pixel
is called the nucleus. Next, the number of the pixels within
the circular mask that have similar brightness to the nu-
cleus are calculated. These pixels define the univalue seg-
ment assimilating nucleus or USAN. Later the USAN size
is compared to the geometric threshold to produce an edge
strength image. Geometric threshold is usually chosen as
3/4 and 2/3 of maximum size of USAN for detecting edges
and corners, respectively. Finally, we select a nucleus that
has the maximum size of USAN and is placed within the
edges estimated using the SUSAN method as the needle tip
centroid. An advantage of this method compared to other
corner detectors is that SUSAN does not use the deriva-
tives operator, which makes it faster and less sensitive to
noise. Also, we select a circular template with the diameter
of 21 pixels which is almost equal to the outer diameter
of the needle (1.27 mm). By incorporating a geometrically
exact template in SUSAN algorithm, we ensure that the
algorithm selects the biggest blob that matches the needle
shape rather than selecting the comet tail artifacts (CAT)
commonly seen in the ultrasound images.36

In the final step, we estimate the motion vector of the
needle in 2D images to select the next ROI. The motion vec-
tor is calculated between 2 adjacent frames and only used
to select the ROI in the upcoming frame. Under the as-
sumption that all pixels in the ROI undergo a translational
motion denoted by one 2D motion vector, we can estimate
the motion vector by minimizing the sum of squared differ-
ences (SSD) between the two displaced frames. The SSD is
given by

SSD(µ, ν) =
∑
x,y

[I(x+ ε, y + ν)− I(x, y)]
2

(21)

where the pixel intensity at position (x, y) is given by
I(x, y) and ε and ν are components of motion vector in
the x and y directions, respectively.

In order to calculate the motion vector, a fast template
search algorithm is presented. In this method, we search
between neighbouring pixels of the centroid in the current
frame to find the pixel in which the sum of squared dif-
ferences (SSD) between the current and previous frames
is minimum. In the fast search algorithm, first a 20 by 20
window of pixels around the located needle tip is selected.
Then, we simply move the center of the template on 16 ran-
domly selected neighbouring pixels and calculate the SSD
over the whole area spanned by the template. The pixel in
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(a)

(b) (c) (d) (e) (f)

Fig. 8. The image processing algorithm for locating the needle tip. (a) Two subsequent transverse ultrasound images in which
needle is circled in white and the position of the needle in the first frame is shown with an arrow. (b) The region of interest in the
first frame is selected around the needle tip. (c) The grayscale image is smoothed to filter out the artifacts and iterative thresholding
is performed to separate the needle cross section from image background. (d) SUSAN corner detection is applied and the needle tip
centroid (needle tip deflection) is calculated in the selected ROI. (e) The motion vector of the needle tip in the transverse images
is calculated by minimizing the sum of squared differences between the current ROI and the one from the previous frame. (f) The
motion vector is used to select the ROI in the next frame.

which the magnitude of SSD is minimum is selected as the
new centroid. Next, we accelerate the algorithm by cutting
down the search step size by two and repeat the search
around the newly selected centroid. The search is contin-
ued until the search step becomes one. Finally, the motion
of the newly found matched template is equal to (ε, ν) in
(21).

After the needle tip position is determined, the cutting
path can be estimated by fitting a 3rd-order polynomial
to the tip position using the linear least squares method.
Each pixel in the ultrasound image is 0.063 mm. This is the
maximum accuracy for estimating the cutting path. How-
ever, considering the error of image processing and needle
tracking, this error can be larger. The cutting path and
current needle tip position will be used as the feedback in
the closed-loop control of needle steering discussed in the
next section.

6. Model Predictive Control for Needle
Steering

MPC is an advanced optimal control technique widely ap-
plied in the area of process industry.39 The main advantage
of MPC is its simplicity to define and handle constraints.
MPC uses the discrete model of the process (e.g., needle
steering) in order to predict and optimize the future be-
haviour of the system as shown in Fig. 2. Given the last
measurement available at the present time (tn), the con-
troller predicts the dynamic behaviour of the system over
the horizon N based on the model of the system. Only the

first element of the predicted optimal input sequence is ap-
plied to the plant until the next measurement is available.
Subsequently, the horizon is shifted one step forward and
a new optimization problem is formulated and solved.40 In
our case, the control input is a binary signal corresponding
to 180◦ axial rotation of the needle.

We can discretize the needle steering model given by
(17), (16), and (10) as

ωu(k+1) = f(CP, ω0, ωu(k), u(k)), k = 0, ..., N−1 (22)

Using (22), we obtain predictions ωu(k+1) for the deflection
of the needle tip at the time tn+k in the future. In (22), f is
our model that gives the future needle deflection ωu(k+ 1)
as the function of the current control value u(k) and the
current needle deflection ω(k). The cutting path CP and
the initial tip deflection ω0 are the initial conditions for
solving f . CP and ω0 are obtained from the ultrasound
images as discussed in Section 5. Starting from the current
state ω(n), for any given control sequence u(0), ..., u(N−1)
over the horizon length N > 2, we can now use (22) to con-
struct the prediction trajectory ωu.

Next, we use optimal control in order to determine
u(0), ..., u(N −1) such that ωu is as close as possible to our
desired trajectory ωd. To this end, we define a cost func-
tion L(ωu(k), u(k)) that depends on the distance between
ωu(k) and ωd = 0 for u(0), ..., u(N−1). In here, we not only
allow for penalizing the deviation of the output from the
reference but also the distance of the control values u(k)
to a reference control ud, which here we choose as ud. By
penalizing u(k), we can minimize the number of needle ro-
tations and limit the amount of tissue cutting during the
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insertion. A common and popular choice for this purpose
is the quadratic function

L(ωu, u) =‖ ω − ωd(n) ‖2 +Λ ‖ u ‖2 (23)

where ‖ · ‖ denotes the Euclidean norm and Λ is a weighting
parameter that penalizes the control action. The optimal
control problem now becomes

minimize J (n, ω(n), u(0)) =

N−1∑
k=0

L(n+ k, ωu(k), u(k))

(24)
with respect to all admissible control sequences
u(0), ..., u(N − 1) with ωu found from (22).

Let us assume that this optimal control problem has a
solution given by u∗(0), ..., u∗(N − 1) where ·∗ denotes the
internal optimal control variable. In order to get the desired
feedback value µn at tn, we now set µn := u∗(0), i.e., we ap-
ply the first element of the optimal control sequence. This
procedure is sketched in Fig. 9. At the following time in-
stants tn+1, tn+2, ..., we repeat the procedure with the new
ultrasound-based measurements at ω(n + 1), ω(n + 2), ...
in order to derive the feedback values µn+1, µn+2, ... . In
other words, we obtain the feedback law µ by an iterative
online optimization of our model predictions over a moving
horizon.

Refrence trajectory

Past trajectory

Past
Present

Future

Past closed-loop
input

tn tn+1 tn+N

Future closed-loop input

Optimal open-loop 
control input

Optimal predicted 
trajectory

Current state

Fig. 9. Illustration of the MPC step at time tn

In the following section, details of the nonlinear model
predictive control (NMPC) algorithm are discussed. The
additional term ”nonlinear” indicates that our model is not
a linear map.

6.1. Model Predictive Algorithm

The NMPC algorithm for constrained control of needle tip
trajectory for tracking a desired time varying trajectory at
each sampling time tn, n = 0, 1, 2, ..., is:

Algorithm 6.1.
(1) Measure the cutting path CP and the needle tip

deflection ω0 from the ultrasound images .

(2) Solve the following optimal control problem for the
current state of the system ω(n) to obtain the op-
timal control sequence u∗(k):

minimize

J (n, ω(n), u(0)) =

N−1∑
k=0

wkL(n+ k, ωu(k), u(k))

subject to ωu(k + 1) = f(CP, ω0, ωu(k), u(k))

and

N−1∑
k=0

u(k)− Umax 6 0

(3) Define the NMPC control command µn := u∗(0)
and use this value as control command in next sam-
pling time.

In Algorithm 6.1, wk, k = 0, ..., N − 1, are weights on sum-
mands of the cost function. Using the weights, we can
penalize the cost function at a certain time or insertion
depth. For instance by setting wN−1 = 1 and wk = 0 for
k = 0, ..., N − 2, the focus of the optimization will be on
minimizing the error of the needle steering at the final tip
position (target point) rather than tracking a certain tra-
jectory at different depths. Also, Umax is the constraint we
put on the number of needle tip rotations. We intend to
minimize the number of needle rotations to limit the tis-
sue damage during needle insertion. Typically, during the
insertion of needles into a patient, the surgeon limits the
number of the needle rotations. This is due to concerns
from physicians that increasing the number of needle rota-
tions will lead to a drilling motion which will increase tissue
cutting and damage the surrounding tissue. This has been
previously investigated.41,42 In the proposed approach this
has been done in two different ways: (1) By penalizing the
control action in the cost function in (23), and (2) by limit-
ing the total number of rotations in each optimization step
. Constraining u can be also useful for computational rea-
sons because the optimal control problem is easier to solve
if the control variable is penalized.

The optimal control problem must be solved multi-
ple times in each iterate of the NMPC procedure. Thus
we need to use an algorithm that is able to find a good
enough solution in a reasonable amount of time. Below, we
will use simulated annealing (SA) to find a good approx-
imation to the global optimum of the problem. Simulated
annealing is a generic probabilistic metaheuristic method
for solving bound-constrained optimization problems. The
method models the physical process of heating a mate-
rial and then slowly lowering the temperature to decrease
defects, thus minimizing the system energy.43 In an opti-
mization problem, as the number of possible solutions gets
large, it becomes too computationally intensive to check
every possible itinerary. SA is effective at tracking down
the best possible solution in a specified fixed optimization
time.44 The method can handle nonlinear constrained prob-
lems and have been previously used in autonomous robotic
path planning.45,46
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The inputs to the optimization algorithm are the max-
imum allowable computation time (tc), the initial temper-
ature (T0), and the annealing parameter (k). Temperature
is a parameter in simulated annealing that affects the al-
gorithm in two ways: (1) Changing the distance of a trial
point from the current point, and (2) changing the prob-
ability of accepting a trial point with a higher objective
function value. Trial points correspond to the control in-
put. The binary control input sequence is characterized by
two components, namely the number of needle rotations
and the depths at which the rotations take place.

The simulated annealing algorithm for solving the fi-
nite horizon nonlinear optimal control is as follows:

Algorithm 6.2.
(1) Starting from an initial point and an initial tem-

perature, the algorithm generates a random initial
point. The distance of the trial point from the cur-
rent point is chosen using normal probability distri-
bution with a scale depending on the current tem-
perature. Step length is equal to the current tem-
perature, and direction is chosen to be uniformly
random.

(2) The algorithm determines whether the new point
is better or worse than the current point. If the
new point is better, it becomes the next point. If
not, then the algorithm can still make it the next
point using the following acceptance probability
function:

Pa =
1

1 + exp
(

∆
max(T )

)
where ∆ is the difference between the new and the
old cost functions, and T is the temperature.

(3) The algorithm lowers the temperature while stor-
ing the best point found so far using

T =
T0

k

where k denotes the annealing parameter and is
chosen to be the same as the iteration number.

(4) The algorithm stops when the average change in
the objective function is small relative to a prede-
fined tolerance, or when it reaches the optimization
time limit (tc).

As mentioned previously, tc is the computation time of the
optimization process. This time is large compared to the
sampling period. Also, the computational delay caused by
step (2) in Algorithm 6.1 is not negligible and needs to be
considered. In the next section, we present a method to
compensate for this delay.

6.2. Delay Compensation

In this section, we employ our needle steering model as a
predictor in the NMPC scheme to compensate for the com-
putation delay. Without the delay compensation proposed

in the paper, the solution to the optimal control problem
and calculation of the required control action (i.e., depth of
needle rotation) will be subject to delay. This means that
the robot will not be able to apply the control command on
time. For instance, assume the optimal depth to perform a
rotation for correcting the needle path is calculated to be
40 mm. However, when the controller wants to apply this
command, the needle will be at a depth of 45 mm (because
the needle keeps moving while the optimization problem is
being solved).

Close scrutiny of Algorithm 6.1 shows that steps (1)
to (3) correspond to different physical tasks: ultrasound-
based measurements, computing optimal control input, and
applying the control to the physical plant. These tasks are
operated by individual components, namely, the sensor, the
MPC controller, and the plant (see Fig. 2). The idea behind
the compensation approach is to run the NMPC controller
component with a predefined time offset (tmax). This offset
causes the controller to compute a control command ahead
of time, such that the computed control command value
is readily available at the time it is supposed to be ap-
plied to the plant. This offset should be chosen larger than
the maximal computing time required to solve the optimal
control problem (tc). At time tn, the optimal control prob-
lem is solved with a prediction ω̂(n) of the initial value ω(n)
based on the available sensor measurement at time tn. This
prediction is performed using the developed needle steering
model, which is also used for the NMPC prediction.

In order to perform this prediction, the control com-
mands to be applied to the plant during the computation
time interval and have been computed before by the NMPC
controller are needed to be stored using a buffer. Thus, we
extend the scheme given in Fig. 2 by adding the required
predictor and buffer to the controller. The structure of the
resulting scheme is shown in Fig. 10(a) and the scheduling
structure for the delay compensation strategy is sketched
in Fig. 10(b). Other than delay compensation, advantage
of this method is that we can run the three components of
the system as separate algorithms in parallel.

Ultrasound
 image

Optimal
control action

Desired needle
tip trajectory

MPC

Plant Sensor

Needle tip 
deflection

PredictorBuffer

Prediction of needle 
tip deflection

Future optimal
control action

(a)
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Fig. 10. A schematic of the delay compensation strategy. (a)
Block diagram of the time decoupled closed-loop NMPC control
with delay compensation. (b) Comparison of scheduling struc-
ture between NMPC (dashed line) and NMPC with delay com-
pensation with tmax = 3 ∗ sampling time (solid line)

As discussed before, solving Step (2) of Algorithm 6.1,
is computationally demanding. Thus, tmax can be relatively
larger than the sampling time. Consequently, at the start
of the needle insertion for a certain time (tmax) no con-
trol command will be available. To avoid this situation we
solve the optimal control problem offline once before the in-
sertion begins. Then, we use the acquired optimal control
command at the beginning of the insertion.

In the next section we present the experiments per-
formed on ex-vivo tissue phantom to validate the proposed
needle steering model and our MPC based needle steering
strategy.

7. Experimental Evaluation

In this section needle insertion experiments are designed
and performed on soft tissue samples. The goals of the
experiments are identifying the model parameters, verify-
ing the model accuracy and validating the proposed needle
steering strategy.

Ultrasound positioning
linear stage

Needle

Ultrasound 
probe

Ex-vivo tissue

Rotary actuator

Needle insertion
linear stage

Needle beveled tip

Fig. 11. Experimental setup used to perform needle insertion
experiments. The setup has three degrees of freedom, the trans-
lational and rotational motions of needle and translational mo-
tion of the ultrasound probe.

In order to perform needle insertion into soft tissue,
the setup shown in Fig. 7 is used. The setup consists of a
robotic system with three degrees of freedom (DoF). Two
DoFs for linear needle insertion and axial needle rotation
and one DoF for linear motion of the probe of the the ul-
trasound machine (SonixTouch, Ultrasonix, BC, Canada).
During the insertions the ultrasound probe follows the nee-
dle tip and acquires transverse images of the needle tip in
ex-vivo tissue. The needle used to perform insertions is a
standard 18-gauge brachytherapy needle (Eckert & Ziegler
BEBIG Inc., Oxford, CT, USA) made of stainless steel,
with an outer diameter of 1.27 mm, an inner diameter of
1 mm. Beef loin tissue is used in the needle steering ex-
periments. Bovine tissue is embedded in gelatin to get a
smoother surface on top. This increases the contact surface
between the ultrasound probe and the tissue and conse-
quently reduces the noise in the ultrasound images. Same
tissue was used in all the experiments.

7.1. Model Identification and Validation

In order to identify the tissue cutting force and the pa-
rameters of the soft tissue model we follow the approach
discussed in our previous work.18 The values of the param-
eters of the needle steering model are given in Table 1.

Table 1. Experimentally identified model parame-
ters and constant known parameters of the model

Identified
parameters

Ks [N/m2] Cs [N.sec/m2] P [N] Q [N]

3.2 × 105 9.6 × 104 0.290 0.798

Known
parameters

E [GPa] ` [m] ρ [Kg/m3] A [m2] I [m4] α [◦]

200 0.2 8030 4.81 × 10−7 7.75 × 10−14 20

Now we can validate the model by comparing the
predicted and measured needle tip deflection. In the ex-
periments, the brachytherapy needle is inserted to a depth
of 135 mm with a speed of 5 mm/s. Experiments are
performed with and without axial needle rotation. In in-
sertions with rotation either a single rotation is performed
at a depth of 45 and 85 mm, or double rotations are per-
formed at depths of 45 and 85 mm. Five needle insertions
are performed for each scenario. A well-tuned PID con-
troller is used to rotate the needle tip in less than 0.2 sec
as it was inserted, thus ensuring the needle stayed in the
insertion plane. Another PID controller is used for ultra-
sound positioning. Needle tip tracking algorithm discussed
in Section 5 is used to find the needle tip deflection in the
model validation experiments. Settling time of the PID
controllers are negligible compared to the delay caused by
iteratively solving the optimal control problem.
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Fig. 13(a) shows the result of needle insertion experi-
ments compared to the model predictions. According to the
results, the model captures the effect of axial tip rotation
on the needle deflection. The maximum error in predicting
the final tip position is 1.24 mm for rotation at the depth of
40 mm. Maximum prediction error for needle tip trajectory
is 1.45 mm at the depth of 86 mm for insertion with sin-
gle rotation at the depth of 80 mm. In model predictions,
when the needle is axially rotated, there is a small jump
in the needle tip trajectory that corresponds to a sudden
change of the cutting force orientation. However, this sud-
den deflection is small (a maximum of 0.61 mm) and has
a negligible effect on the needle tip trajectory predictions.
The results of this experiment are summarized in Table 2.
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Fig. 12. A comparison of experimentally-obtained needle tip
deflections and the corresponding model predictions for needle
insertion at constant velocity of 5 mm/sec with and without
axial axial rotations. Error bars denote standard deviation of
experimental data.

Table 2. Results of insertion of the needle with and with-
out axial rotation(s). Final tip position in the experi-
ments ωexp(`), final tip position in the simulation ωsim(`),
maximum tip error emax, standard deviation of final tip
position σ(`), and root-mean-square error (RMSE) are

listed. RMSE is calculated as

√∑n
i=1(ŷi − yi)

2

n
and is

used as a measure of the differences between values pre-
dicted by the identified model, ŷ, and the values actu-
ally observed in the experiments, y, for n data points.

Rotation depth(s) [mm] – 40 80 40 & 80

ωexp(`) [mm] 13.52 -0.21 8.29 6.30
ωsim(`) [mm] 13.06 1.03 9.02 5.85
emax [mm] 0.43 1.24 1.45 1.29
σ(`) [mm] 0.69 0.85 0.91 1.06

RMSE [mm] 0.086 0.276 0.462 0.395

7.2. Needle Steering Results

In this section, needle steering controller is evaluated by
performing needle steering experiments in ex-vivo tissue
phantom. Considering the smallest tumour that can be de-
tected using ultrasound images has a diameter of 2.0 mm,2

we considered a circular target region of 2 mm for all the
experiments described below. The targeting accuracy of the
needle tip is calculated by measuring the distance between
the center of the target and the final needle tip position.

The MPC control algorithm is executed on an Intel i7
3.33 GHz PC. The time offset tmax required for cost func-
tion optimization in the MPC, is set equal to 10 seconds,
which is a sufficiently short-time interval for clinical ap-
plications that require needle insertion depth ranging from
100 mm to 150 mm.47 During the optimization, the needle
model is used to generate a minimum of 20 needle trajec-
tory predictions. The needle insertion and rotational veloc-
ities used during the experiments are 2 mm/s and 300 rpm,
respectively, and the total depth of insertion is 140 mm. In
the experiments, the needle tip is inserted in the tissue for
5 mm by hand prior to robotic needle insertion to fix the
entry point.

Two virtual scenarios are used in the experiments and
we executed our system 5 times for each experimental sce-
nario.

• Scenario I The needle is steered to follow a
straight line and reach a target placed at the depth
140 mm. This is similar to the needle insertion in
brachytherapy where the seeds should be placed
along a straight line within the tissue.

• Scenario II A 4 mm circular obstacle is positioned
at 70 mm between the needle entry point in the tis-
sue and the target. The needle is steered to reach a
target at the depth of 140 mm while avoiding the
obstacle. Obstacles are sensitive or impenetrable
anatomical regions in the proximity of the target
point such as blood vessels.

In the first scenario the model prediction horizon is
set to 10 sec corresponding to insertion depth of 20 mm.
In the first scenario, the needle is inserted at a constant
velocity of 2 mm/s and the model prediction horizon is set
to 10 sec corresponding to the insertion depth of 20 mm.
Goal of the first scenario is to steer the needle on a straight
line and we want the controller to focus on minimizing the
trajectory tracking error regardless of the target position.
It is clear that by tracking a straight line leading to the
target we will be able to reach the target. In the second
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Fig. 13. Representative experimental needle steering results and corresponding controller input command (a) Scenario I–needle
steering with the aim of moving on a straight line. (b) Scenario II–needle steering with the aim of manoeuvring around an obstacle.

scenario the prediction horizon is the maximum insertion
depth, i.e. 70 sec for insertion depth of 140 mm. The goal of
the second scenario is to steer the needle to reach a target
at the depth of 140 mm while avoiding an obstacle placed
at the depth of 70 mm. In this scenario we plan to follow
a curve going around the obstacle and reaching the target
and minimize the targeting error. Thus in this scenario we
select the prediction horizon equal to the total insertion
depth to include the targeting error in the optimal control
problem. The desired tip trajectory is a 3rd order polyno-
mial starting from the entry point and ending at the target
location with maximum distance of 3 mm from the centroid
of the obstacle. The number of allowable rotations in the
prediction horizon (Umax) is three for both scenarios.

A representative results for scenario (1) and (2) are
given in Fig.13(a) and Fig.13(b), respectively. The exper-
imental results are provided in Table 3. The maximum,
mean and standard deviation of targeting error are re-
ported.

Table 3. Result of needle steering experiments. Max-
imum number of axial rotations rot, mean target-
ing error emean, maximum targeting error emax,
standard deviation of targeting error σ are listed.

rot emax [mm] emean [mm] σ [mm]

Scenario I 13 2.10 1.75 0.61

Scenario II 7 2.85 2.25 0.97

The maximum targeting error in the first and second
scenario are 2.10 mm and 2.85 mm, respectively. Also, the
minimum distance from the obstacle in the second scenario
is 1.4 mm. Currently, average seed placement errors by ex-
perienced brachytherapists are in the range of about 6.3
mm.5,48 Another study showed that prostate biopsies via

rigid needles show average targeting errors of 5.5 to 6 mm.49

Thus, with the proposed needle steering strategy targeting
accuracy can be improved by almost 50%.

8. Concluding Remarks

This study combines a needle deflection model, image pro-
cessing techniques, and a model predictive controller to ac-
curately steer bevel tipped flexible needles with the aim of
reaching desired target location inside soft tissues.

We proposed a novel model of needle steering dynam-
ics that can be used to predict needle tip deflection in real-
time. The model accepts the axial needle rotation as an
input and accounts for the effects of tissue deformation
during needle insertion. Experimental results demonstrate
that the proposed model can predict needle deflection with
a maximum error of 1.45 mm. A needle tip tracking system
is developed to determine needle tip deflection from the ul-
trasound images in real-time. The estimated tip deflection
is later employed in the needle deflection model to predict
needle tip trajectory in the future steps.

The proposed image processing algorithm combined
with the needle deflection model make the foundations of a
model predictive controller for needle steering. The needle
steering controller provides accurate targeting while avoid-
ing anatomical obstacles such as sensitive or impenetra-
ble structures. We experimentally evaluated our approach
by performing needle insertion experiments in ex-vivo tis-
sue. The experimental results demonstrate that our needle
steering approach successfully guides the needle to desired
targets with and without the presence of obstacles with an
average error of less than 2 mm and 3 mm, respectively,
which is within clinically acceptable thresholds.

Identified values for some of the needle steering model
parameters (such as the tissue cutting force and tissue stiff-
ness) are only the nominal values and the magnitude of
these parameters might change during the needle insertion
due to factors such as tissue inhomogeneity. Using the pro-
posed feedback controller, we are able to correct uncertain
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perturbations caused by deviation of parameters from their
nominal values. However, there are new MPC methods with
enhanced robustness properties. In future work we will im-
plement these methods to enhance performance of the nee-
dle steering controller.

The main drawback of the proposed system is 2D nee-
dle steering. During clinical needle steering the needle tip
might deviate and deflect out of plane. Many factors such
as tissue inhomogeneity can cause out of plane needle de-
flection. In future work, we will extend the model to cap-
ture needle deflection in 3D and perform controlled needle
steering in a 3D environment. Also, we intend to enhance
the computational efficiency of the model to decrease the
time needed for path planning. This way we will be able to
perform rapid path planning during the needle insertion.
The planner uses the model and the online needle deflec-
tion feedback to update the desired trajectory online. Also,
in order to provide a more realistic testing scenario, needle
steering tests will be conducted on biological tissue with
moving targets. In this case, motion of the target can be
tracked in the ultrasound images or compensated in the
control algorithm using a soft tissue model that predicts
target displacements.

Acknowledgments

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada under
grant CHRP 446520, the Canadian Institutes of Health Re-
search (CIHR) under grant CPG 127768 and the Alberta
Innovates - Health Solutions (AIHS) under grant CRIO
201201232. The authors would like to acknowledge Michael
Waine for his assistance with the real-time image process-
ing system used in the paper.

References

[1] N. Abolhassani, R. Patel and M. Moallem, Needle in-
sertion into soft tissue: A survey, Medical Engineering
& Physics 29(4) (2007) 413 – 431.

[2] P. Moreira and S. Misra, Biomechanics-based curva-
ture estimation for ultrasound-guided flexible needle
steering in biological tissues (2014) 1–11.

[3] D. Rucker, J. Das, H. Gilbert, P. Swaney, M. Miga,
N. Sarkar and R. Webster, Sliding mode control of
steerable needles, IEEE Transactions on Robotics 29
(Oct 2013) 1289–1299.

[4] S. Patil, J. Burgner, R. Webster and R. Alterovitz,
Needle steering in 3-d via rapid replanning, IEEE
Transactions on Robotics 30 (Aug 2014) 853–864.

[5] G. J. Vrooijink, M. Abayazid, S. Patil, R. Alterovitz
and S. Misra, Needle path planning and steering
in a three-dimensional non-static environment using
two-dimensional ultrasound images, The International
Journal of Robotics Research (2014).

[6] S. DiMaio and S. Salcudean, Needle steering and
model-based trajectory planning, Medical Image Com-

puting and Computer-Assisted Intervention - MICCAI
2003 , 2878 (Springer Berlin Heidelberg, 2003), pp.
33–40.

[7] S. DiMaio and S. Salcudean, Interactive simulation
of needle insertion models, IEEE Transactions on
Biomedical Engineering 52(7) (2005) 1167–1179.

[8] O. Goksel, S. Salcudean and S. Dimaio, 3D simula-
tion of needle-tissue interaction with application to
prostate brachytherapy, Computer Aided Surgery 6
(2006) 279–88.

[9] D. Glozman and M. Shoham, Image-guided robotic
flexible needle steering, IEEE Transactions on
Robotics 23 (June 2007) 459–467.

[10] R. Alterovitz, A. Lim, K. Goldberg, G. Chirikjian and
A. Okamura, Steering flexible needles under Markov
motion uncertainty, IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, (2005), pp.
1570–1575.

[11] R. Webster, N. Cowan, G. Chirikjian and A. Oka-
mura, Nonholonomic modeling of needle steering, Ex-
perimental Robotics IX , 21 (Springer Berlin Heidel-
berg, 2006), pp. 35–44.

[12] W. Park, Y. Liu, Y. Zhou, M. Moses and G. S.
Chirikjian, Kinematic state estimation and motion
planning for stochastic nonholonomic systems using
the exponential map, Robotica 26 (2008) 419–434.

[13] D. Minhas, J. Engh, M. Fenske and C. Riviere, Mod-
eling of needle steering via duty-cycled spinning, 29th
Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society (EMBS),
(Aug 2007), pp. 2756–2759.

[14] K. Yan, W. S. Ng, K.-V. Ling, Y. Yu, T. Podder, T.-
I. Liu and C. W. S. Cheng, Needle steering modeling
and analysis using unconstrained modal analysis, The
First IEEE International Conference on Biomedical
Robotics and Biomechatronics, (2006), pp. 87–92.

[15] O. Goksel, E. Dehghan and S. E. Salcudean, Modeling
and simulation of flexible needles, Medical Engineering
& Physics 31(9) (2009) 1069 – 1078.

[16] A. Asadian, M. Kermani and R. Patel, A compact dy-
namic force model for needle-tissue interaction, An-
nual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBS), (2010),
pp. 2292–2295.

[17] T. Lehmann, M. Tavakoli, N. Usmani and R. Slo-
boda, Force-sensor-based estimation of needle tip de-
flection in brachytherapy, Journal of Sensors 2013
(2013) p. 10.

[18] M. Khadem, B. Fallahi, C. Rossa, R. Sloboda, N. Us-
mani and M. Tavakoli, A mechanics-based model
for simulation and control of flexible needle inser-
tion in soft tissue, IEEE International Conference on
Robotics and Automation (ICRA), (2015).

[19] S. Misra, K. Reed, B. Schafer, K. Ramesh and A. Oka-
mura, Mechanics of flexible needles robotically steered
through soft tissue, Int. J. Rob. Res. 29(13) (2010)
1640–1660.

[20] R. Roesthuis, M. Abayazid and S. Misra, Mechanics-



April 5, 2016 11:12 JMMR

16 Mohsen Khadem

based model for predicting in-plane needle deflec-
tion with multiple bends, 4th IEEE RAS EMBS In-
ternational Conference on Biomedical Robotics and
Biomechatronics, (2012), pp. 69–74.

[21] T. Adebar, A. Fletcher and A. Okamura, 3-D
ultrasound-guided robotic needle steering in biological
tissue, IEEE Transactions on Biomedical Engineering
61 (Dec 2014) 2899–2910.

[22] S. Misra, K. Reed, A. Douglas, K. T. Ramesh
and A. Okamura, Needle-tissue interaction forces for
bevel-tip steerable needles, Biomedical Robotics and
Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS
EMBS International Conference on, (2008), pp. 224–
231.

[23] K. Reed, V. Kallem, R. Alterovitz, K. Goldberg,
A. Okamura and N. Cowan, Integrated planning
and image-guided control for planar needle steering,
2nd IEEE RAS & EMBS International Conference
on Biomedical Robotics and Biomechatronics, BioRob
2008., (2008), pp. 819–824.

[24] P. Hagedorn and A. DasGupta, Vibrations and Waves
in Continuous Mechanical Systems (Wiley, 2007).

[25] Y. Fung, Foundations of solid mechanicsPrentice-Hall
international series in dynamics, Prentice-Hall inter-
national series in dynamics (Prentice-Hall, 1965).

[26] B. Galerkin, Series solution of some problems of elas-
tic equilibrium of rods and plates, Wjestnik Ingenerow
Petrograd (1915) 897–908.

[27] G. Genta, Vibration Dynamics and Control (Springer,
2009).

[28] Z. Wei, L. Gardi, D. Downey and A. Fenster, Oblique
needle segmentation for 3D trus-guided robot-aided
transperineal prostate brachytherapy, IEEE Interna-
tional Symposium on Biomedical Imaging: Nano to
Macro, (April 2004), pp. 960–963.

[29] P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J.
Del Nido, P. E. Dupont and R. D. Howe, GPU based
real-time instrument tracking with three dimensional
ultrasound, Medical image analysis 11(5) (2007) 458–
464.

[30] H. Neshat and R. Patel, Real-time parametric
curved needle segmentation in 3D ultrasound images,
2nd IEEE RAS EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob),
(Oct 2008), pp. 670–675.

[31] M. Ding, Z. Wei, L. Gardi, D. B. Downey and A. Fen-
ster, Needle and seed segmentation in intra-operative
3D ultrasound-guided prostate brachytherapy, Ultra-
sonics 44 (2006) 331 – 336, Proceedings of Ultrason-
ics International and World Congress on Ultrasonics
(WCU).

[32] M. Uhercik, J. Kybic, H. Liebgott and C. Cachard,
Model fitting using ransac for surgical tool localiza-
tion in 3-d ultrasound images, Biomedical Engineer-
ing, IEEE Transactions on 57(8) (2010) 1907–1916.

[33] S. H. Okazawa, R. Ebrahimi, J. Chuang, R. N. Rohling
and S. E. Salcudean, Methods for segmenting curved
needles in ultrasound images, Medical Image Analysis

10 (2006) 330–342.
[34] M. Kaya and O. Bebek, Needle localization using

gabor filtering in 2d ultrasound images, IEEE In-
ternational Conference on Robotics and Automation
(ICRA), (2014), pp. 4881–4886.

[35] J. Carriere, C. Rossa, N. Usmani, R. Sloboda and
M. Tavakoli, Needle shape estimation in soft tissue
based on partial ultrasound image observation, IEEE
International Conference on Robotics and Automation
(ICRA), (May 2015), pp. 2277–2282.

[36] M. Abayazid, G. Vrooijink, S. Patil, R. Alterovitz
and S. Misra, Experimental evaluation of ultrasound-
guided 3d needle steering in biological tissue, Inter-
national Journal of Computer Assisted Radiology and
Surgery 9(6) (2014) 931–939.

[37] M. Waine, C. Rossa, R. Sloboda, N. Usmani and
M. Tavakoli, 3D shape visualization of curved nee-
dles in tissue from 2d ultrasound images using ransac,
IEEE International Conference on Robotics and Au-
tomation (ICRA), (2015).

[38] S. Smith and J. Brady, SUSAN–a new approach to
low level image processing, International Journal of
Computer Vision 23(1) (1997) 45–78.

[39] S. J. Qin and T. A. Badgwell, A survey of indus-
trial model predictive control technology, Control En-
gineering Practice 11(7) (2003) 733–764.

[40] L. Grne and J. Pannek, Nonlinear Model Predictive
Control (Springer London, 2011).

[41] P. Swaney, J. Burgner, H. Gilbert and R. Webster, A
flexure-based steerable needle: High curvature with re-
duced tissue damage, Biomedical Engineering, IEEE
Transactions on 60(4) (April 2013) 906–909.

[42] T. Podder, D. Clark, D. Fuller, J. Sherman, W. Ng,
L. Liao, D. Rubens, J. Strang, E. Messing, Y. Zhang
and Y. Yu, Effects of velocity modulation during surgi-
cal needle insertion, Engineering in Medicine and Bi-
ology Society, 2005. IEEE-EMBS 2005. 27th Annual
International Conference of the, (2005), pp. 5766–
5770.

[43] I. O. Bohachevsky, M. E. Johnson and M. L. Stein,
Generalized simulated annealing for function opti-
mization, Technometrics 28 (August 1986) 209–217.

[44] V. Cerny, Thermodynamical approach to the travel-
ing salesman problem: An efficient simulation algo-
rithm, Journal of Optimization Theory and Applica-
tions 45(1) (1985) 41–51.

[45] W. Carriker, P. Khosla and B. Krogh, Path planning
for mobile manipulators for multiple task execution,
IEEE Transactions on Robotics and Automation 7
(Jun 1991) 403–408.

[46] P. Caricato and A. Grieco, Using simulated annealing
to design a material-handling system, IEEE Intelligent
Systems 20 (July 2005) 26–30.

[47] T. Podder, D. Clark, D. Fuller, J. Sherman, W. Ng,
L. Liao, D. Rubens, J. Strang, E. Messing, Y. Zhang
and Y. Yu, Effects of velocity modulation during surgi-
cal needle insertion, 27th Annual International Con-
ference of the Engineering in Medicine and Biology



April 5, 2016 11:12 JMMR

Ultrasound-guided Control of Needle Steering 17

Society, IEEE-EMBS , (2005), pp. 5766–5770.
[48] R. Taschereau, J. Pouliot, J. Roy and D. Tremblay,

Seed misplacement and stabilizing needles in transper-
ineal permanent prostate implants, Radiotherapy and
Oncology 55(1) (2000) 59 – 63.

[49] P. Blumenfeld, N. Hata, S. DiMaio, K. Zou, S. Haker,
G. Fichtinger and C. M. Tempany, Transperineal
prostate biopsy under magnetic resonance image guid-
ance: A needle placement accuracy study, Journal of
Magnetic Resonance Imaging 26(3) (2007) 688–694.

Mohsen Khadem received his BSc and
MSc degrees in mechanical engineering from Shiraz Uni-
versity and Sharif University of Technology, Iran, in 2010
and 2013, respectively. He is currently working towards the
Doctoral degree in Electrical and Computer Engineering at
University of Alberta and is working on robotics-assisted
minimally invasive surgery. His current research interests
include medical robotics and image-guided surgery.

Carlos Rossa received the Engineering
and the M.Sc degrees in Mechatronics from the Ecole Na-
tionale d’Ingenieurs de Metz, France, both in 2010, and
earned the PhD degree in Mechatronics and Robotics from
the University of Paris VI, Paris, France in 2013. He is cur-
rently a postdoctoral research fellow with the Department
of Electrical and Computer Engineering at the University
of Alberta, Edmonton, Canada. Dr. Rossa’s current re-
search interests include the design and control of haptic
interfaces, actuators and sensors technologies, mechatron-
ics, and medical robotics.

Nawaid Usmani is an Associate Pro-

fessor in Department of Oncology, University of Alberta,
Canada, and a radiation Oncologist at Cross Cancer Insti-
tute, Edmonton, Canada. He received his Bachelor of Arts
& Science from McMaster University, Canada in 1998 and
his Doctorate of Medicine from McMaster University in
2001. Dr. Usmani’s main focus on research is in prostate
brachytherapy, including magnetic resonant imaging and
PET imaging in the management of prostate cancer.

Ron S. Sloboda is a Professor in De-
partment of Oncology, University of Alberta, Canada. He
received his BSc degree in Physics from the University of
Manitoba, Canada, in 1974 and his PhD degree in Physics,
Nuclear Theory from the University of Alberta, Canada,
in 1979. Dr. Sloboda’s research interests are dosimetry and
treatment planning for brachytherapy, including the de-
sign of clinical studies to obtain patient data that inform
model-based dose calculation.

Mahdi Tavakoli is an Associate Profes-
sor in the Department of Electrical and Computer Engi-
neering, University of Alberta, Canada. He received his
BSc and MSc degrees in Electrical Engineering from Fer-
dowsi University and K.N. Toosi University, Iran, in 1996
and 1999, respectively. He received his PhD degree in Elec-
trical and Computer Engineering from the University of
Western Ontario, Canada, in 2005. In 2006, he was a post-
doctoral researcher at Canadian Surgical Technologies and
Advanced Robotics (CSTAR), Canada. In 2007-2008, he
was an NSERC Post-Doctoral Fellow at Harvard Univer-
sity, USA.

Dr. Tavakolis research interests broadly involve the
areas of robotics and systems control. Specifically, his re-
search focuses on haptics and teleoperation control, medi-
cal robotics, and image-guided surgery. Dr. Tavakoli is the
lead author of Haptics for Teleoperated Surgical Robotic
Systems (World Scientific, 2008).




